

Ballistic Guides and Imaging Forming Mirrors: How to simultaneously improve resolution and intensity

Daniel S. Hussey
Physical Measurement
Laboratory,
NIST





#### Outline

- The NG-C Guide
- Pinhole Optics
- Wolter Optics (axisymmetric mirrors)
- Wolter Optics Imaging and SANS Demonstration Experiments



## NG-C Curved, Ballistic Guide





Photo of NG-D, NG-C and NG-B sections that are closest to the cold source

Total Length: 57.49 m

Radius: 933 m



#### NG-C Guide Performance



#### NG-C w/ LH2 vs. ILL and SNS



With the LD cold source upgrade, NG-C will rival the most intense neutron beam, despite the ~3x lower power of the source.

Graphic curtesy T. Gentile



# Pinhole Optics: Neutron Image Formation

- Pinhole optics is basis of conventional neutron image formation
- Poke hole in reactor wall, form image of core at detector
- Best resolution obtained when object contacts detector due to using large apertures (1-10 mm)
- Resolution derived from collimation, where geometric blur is given by:

$$\lambda_a \approx z d/L$$

- High resolution requires small aperture (d) and/or large L
- Since Flux goes as (d/L)², Small d and/or large L → small Flux → Ø
- Also, no magnification, so intrinsic detector resolution only path to higher resolution
- Even with better detectors, in a 1 μm pixel with a 10<sup>6</sup> flux cm<sup>-2</sup> s<sup>-1</sup>, there's only 1 neutron every 100 s.





# Pinhole Optics: Take Home Message

- Simple setup and has produced lots of nice images and scattering patterns but ...

• If only we had an achromatic neutron imagingforming lens ...



## Drawing Inspiration from NASA

- Faint x-ray sources (nebula, etc.) need to be focused for good imaging
- In CHANDRA, the mirrors are coated on 2 cm thick glass substrates, which are heavy for space flight, and impractical for neutrons
- NASA is developing a new fabrication technique to create Wolter Optics from nested Ni-foil mirrors – light for space telescopes and perfect for neutrons
- Reflection is achromatic, Wolter Optics have reasonable off-axis imaging properties
- Resolution from the lens not collimation
- No collimation for resolution can yield 100-1000 flux increase for imaging and SANS
- Magnification of 10x can improve *spatial* resolution to  $1 \mu m$



Wolter Optics power CHANDRA



Ni-foil Focused X-ray Solar Imager



## A Neutron Microscope using Wolter Optics



#### Challenges:

- Gravity bends neutrons and deforms mirrors: correct with prisms
- Surface roughness can produce background for SANS: RMS finish of <5Å possible
- Depth of focus and field curvature: improved with large diameter, short length optics



#### First prototype microscope



- 3 nested Ni mirrors w/ellipsoid and hyperboloid sections
- Overall focal length of 3.2 m
- The lens truly formed neutron images with:
  - 1 cm FOV & 4x magnification
  - 75 μm spatial resolution, 5 mm depth of focus

More work: x100 resolution, x100 flux, x5 depth of focus





2cm x 2cm Pinhole mask, with 0.1 mm diameters on 0.2 mm centers

Left: Contact Image;

Right: Lens Image



#### Fraction of incident flux focused for one shell



- Ray tracing of an optic:
  - paraboloid-paraboloid
  - total optic length of 20 cm
  - focal length of 7.5 m
  - sample 1 cm from the guide
- Larger radius reduces field curvature and improves field of view
- Nesting 14 mirrors with M=1.2 guide yields x100 over BT2 for 10 μm image resolution



## Mirror Configuration and Flux Collection

#### Single Ellipsoidal Mirror





Wolter Optic Type I with 2 paraboloid mirrors





- Radius is taken at the middle of the mirror
- Plots are intensity ratio between the total neutron intensity with and without mirrors
- Pinhole setup, the source and sample apertures are both 5 mm radius
- Ellipsoid mirror is 0.4 m long
- One paraboloid is 0.4 m (0.8 m total)

D. Liu et al, *NIM A*, **686**,145-150 (2012)



## Reduced spot size – lower Qmin

#### **Spot Size without a Lens**



#### **Spot Size with Refractive Lens**





# Reflective Optics are achromatic

Chromatic aberration limits X<sub>min</sub>:

$$X_{min} = \frac{L_2}{L_1} R_{source} + \frac{\Delta x_{det}}{2} + \frac{L_1 + L_2}{L_1} 2 \left(\frac{\Delta \lambda}{\lambda}\right) R_{sample}$$

• Reflective optics  $x_{min}$  depends on source aperture and detector:

$$X_{min} = \frac{L_2}{L_1} R_{source} + \frac{\Delta x_{det}}{2}$$

- Achromatic also means higher flux:
  - Refractive lens focal length =  $\pi$  R ( $\rho$  b<sub>c</sub>  $\lambda^2$ )<sup>-1</sup>
    - Strongly chromatic and on the order of 100 m!
    - Must use λ >~ 10 Å means LOW flux
  - Reflection achromatic
    - Focal length of order few m
    - Can use  $\lambda = 4-5 \text{ Å}$
    - $\times 10$  increase in flux from this alone





## Mirror based SANS at HFIR, CG1 with Chopper



D. Liu et al, ICNS, 2013

50

150



#### SANS performance of prototype lens



Focal Spot size independent of wavelength

Silver Benhate Data shows good Q-resolution







Porasil B data:  $Q_{min} = 0.02 A^{-1}$ 

D. Liu et al, Nat. Commun. 4:2556 doi: 10.1038/ncomms3556 (2013)



## NIST is supporting development through an IMS project

- Year 1:
  - Test a new prototype lens that is targeted for neutron imaging and SANS
  - ✓ Use characterization data to verify lens-modeling results and give confidence to new designs
- Year 2:
  - Install new cold neutron imaging instrument at NG-6 (12/14 – 04/15)
  - Characterize neutron performance of NASA's new fabrication scheme with a goal to demonstrate 10 μm image resolution (12/15)
  - Finalize design and begin fabrication of a 1:1 optic for high speed imaging

- Year 3:
  - Deploy fully optimized, nested
     1:1 imaging optic for high speed
     imaging, investigate SANS
     quality (12/16)
  - Begin user operation for lensbased imaging at 10 μm resolution (12/16)
  - Design for 10x magnifying lens
- Year 4 & 5:
  - $-1 \mu m$  imaging with 10x lens
  - Fully developed user program for imaging and SANS



#### **Conclusions**

- New guides can greatly increase the neutron flux
  - NG-C is 4x the capture flux of NG-6
- Reflective focusing optics provide gains in flux and resolution
  - Imaging Gains:
    - With a 1:1 optic time resolution can be improved by ~x100 for 10 μm image resolution
    - With a 10x magnifying optic, image resolution can reach ~ 1 μm
    - Increased instrument flexibility with large space after the sample for beam conditioning or bulky sample environments
  - SANS Gains:
    - Achromatic lens results in lower Qmin
    - Reflection means measurements can make use of shorter wavelengths
    - Possible large gains in flux to enable time resolved measurements, polarized SANS, etc.
  - May enable new measurement schemes
- NIST in collaboration with NASA and MIT are developing the first neutron microscope through a NIST IMS project, just in its 1<sup>st</sup> year
- Thanks for your attention